| Portability | non-portable |
|---|---|
| Stability | experimental |
| Maintainer | Roman Leshchinskiy <rl@cse.unsw.edu.au> |
| Safe Haskell | Safe-Infered |
Data.Vector.Unboxed.Mutable
Contents
Description
Mutable adaptive unboxed vectors
- data family MVector s a
- type IOVector = MVector RealWorld
- type STVector s = MVector s
- class (Vector Vector a, MVector MVector a) => Unbox a
- length :: Unbox a => MVector s a -> Int
- null :: Unbox a => MVector s a -> Bool
- slice :: Unbox a => Int -> Int -> MVector s a -> MVector s a
- init :: Unbox a => MVector s a -> MVector s a
- tail :: Unbox a => MVector s a -> MVector s a
- take :: Unbox a => Int -> MVector s a -> MVector s a
- drop :: Unbox a => Int -> MVector s a -> MVector s a
- splitAt :: Unbox a => Int -> MVector s a -> (MVector s a, MVector s a)
- unsafeSlice :: Unbox a => Int -> Int -> MVector s a -> MVector s a
- unsafeInit :: Unbox a => MVector s a -> MVector s a
- unsafeTail :: Unbox a => MVector s a -> MVector s a
- unsafeTake :: Unbox a => Int -> MVector s a -> MVector s a
- unsafeDrop :: Unbox a => Int -> MVector s a -> MVector s a
- overlaps :: Unbox a => MVector s a -> MVector s a -> Bool
- new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
- unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)
- replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)
- replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a)
- clone :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m (MVector (PrimState m) a)
- grow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
- unsafeGrow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
- clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()
- zip :: (Unbox a, Unbox b) => MVector s a -> MVector s b -> MVector s (a, b)
- zip3 :: (Unbox a, Unbox b, Unbox c) => MVector s a -> MVector s b -> MVector s c -> MVector s (a, b, c)
- zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s (a, b, c, d)
- zip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s (a, b, c, d, e)
- zip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s f -> MVector s (a, b, c, d, e, f)
- unzip :: (Unbox a, Unbox b) => MVector s (a, b) -> (MVector s a, MVector s b)
- unzip3 :: (Unbox a, Unbox b, Unbox c) => MVector s (a, b, c) -> (MVector s a, MVector s b, MVector s c)
- unzip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s (a, b, c, d) -> (MVector s a, MVector s b, MVector s c, MVector s d)
- unzip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s (a, b, c, d, e) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e)
- unzip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s (a, b, c, d, e, f) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e, MVector s f)
- read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
- write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()
- swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
- unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m a
- unsafeWrite :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()
- unsafeSwap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()
- set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()
- copy :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
- move :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
- unsafeCopy :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
- unsafeMove :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
Mutable vectors of primitive types
class (Vector Vector a, MVector MVector a) => Unbox a Source
Instances
| Unbox Bool | |
| Unbox Char | |
| Unbox Double | |
| Unbox Float | |
| Unbox Int | |
| Unbox Int8 | |
| Unbox Int16 | |
| Unbox Int32 | |
| Unbox Int64 | |
| Unbox Word | |
| Unbox Word8 | |
| Unbox Word16 | |
| Unbox Word32 | |
| Unbox Word64 | |
| Unbox () | |
| (RealFloat a, Unbox a) => Unbox (Complex a) | |
| (Unbox a, Unbox b) => Unbox (a, b) | |
| (Unbox a, Unbox b, Unbox c) => Unbox (a, b, c) | |
| (Unbox a, Unbox b, Unbox c, Unbox d) => Unbox (a, b, c, d) | |
| (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Unbox (a, b, c, d, e) | |
| (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Unbox (a, b, c, d, e, f) |
Accessors
Length information
Extracting subvectors
slice :: Unbox a => Int -> Int -> MVector s a -> MVector s aSource
Yield a part of the mutable vector without copying it.
Yield a part of the mutable vector without copying it. No bounds checks are performed.
unsafeInit :: Unbox a => MVector s a -> MVector s aSource
unsafeTail :: Unbox a => MVector s a -> MVector s aSource
Overlapping
Construction
Initialisation
new :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)Source
Create a mutable vector of the given length.
unsafeNew :: (PrimMonad m, Unbox a) => Int -> m (MVector (PrimState m) a)Source
Create a mutable vector of the given length. The length is not checked.
replicate :: (PrimMonad m, Unbox a) => Int -> a -> m (MVector (PrimState m) a)Source
Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.
replicateM :: (PrimMonad m, Unbox a) => Int -> m a -> m (MVector (PrimState m) a)Source
Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.
clone :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m (MVector (PrimState m) a)Source
Create a copy of a mutable vector.
Growing
grow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)Source
Grow a vector by the given number of elements. The number must be positive.
unsafeGrow :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)Source
Grow a vector by the given number of elements. The number must be positive but this is not checked.
Restricting memory usage
clear :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> m ()Source
Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.
Zipping and unzipping
zip3 :: (Unbox a, Unbox b, Unbox c) => MVector s a -> MVector s b -> MVector s c -> MVector s (a, b, c)Source
O(1) Zip 3 vectors
zip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s (a, b, c, d)Source
O(1) Zip 4 vectors
zip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s (a, b, c, d, e)Source
O(1) Zip 5 vectors
zip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s a -> MVector s b -> MVector s c -> MVector s d -> MVector s e -> MVector s f -> MVector s (a, b, c, d, e, f)Source
O(1) Zip 6 vectors
unzip :: (Unbox a, Unbox b) => MVector s (a, b) -> (MVector s a, MVector s b)Source
O(1) Unzip 2 vectors
unzip3 :: (Unbox a, Unbox b, Unbox c) => MVector s (a, b, c) -> (MVector s a, MVector s b, MVector s c)Source
O(1) Unzip 3 vectors
unzip4 :: (Unbox a, Unbox b, Unbox c, Unbox d) => MVector s (a, b, c, d) -> (MVector s a, MVector s b, MVector s c, MVector s d)Source
O(1) Unzip 4 vectors
unzip5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector s (a, b, c, d, e) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e)Source
O(1) Unzip 5 vectors
unzip6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector s (a, b, c, d, e, f) -> (MVector s a, MVector s b, MVector s c, MVector s d, MVector s e, MVector s f)Source
O(1) Unzip 6 vectors
Accessing individual elements
read :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m aSource
Yield the element at the given position.
write :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()Source
Replace the element at the given position.
swap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()Source
Swap the elements at the given positions.
unsafeRead :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> m aSource
Yield the element at the given position. No bounds checks are performed.
unsafeWrite :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> a -> m ()Source
Replace the element at the given position. No bounds checks are performed.
unsafeSwap :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> Int -> Int -> m ()Source
Swap the elements at the given positions. No bounds checks are performed.
Modifying vectors
Filling and copying
set :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> a -> m ()Source
Set all elements of the vector to the given value.
copy :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()Source
Copy a vector. The two vectors must have the same length and may not overlap.
move :: (PrimMonad m, Unbox a) => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()Source
Move the contents of a vector. The two vectors must have the same length.
If the vectors do not overlap, then this is equivalent to copy.
Otherwise, the copying is performed as if the source vector were
copied to a temporary vector and then the temporary vector was copied
to the target vector.
Arguments
| :: (PrimMonad m, Unbox a) | |
| => MVector (PrimState m) a | target |
| -> MVector (PrimState m) a | source |
| -> m () |
Copy a vector. The two vectors must have the same length and may not overlap. This is not checked.
Arguments
| :: (PrimMonad m, Unbox a) | |
| => MVector (PrimState m) a | target |
| -> MVector (PrimState m) a | source |
| -> m () |
Move the contents of a vector. The two vectors must have the same length, but this is not checked.
If the vectors do not overlap, then this is equivalent to unsafeCopy.
Otherwise, the copying is performed as if the source vector were
copied to a temporary vector and then the temporary vector was copied
to the target vector.